

Cops and Robbers on Certain Hypergraphs

Pinkaew Siriwong

Chulalongkorn University

Story of Cops and Robbers Game

1983 NOWAKOWSKI AND WINKLER

- Introduce the game of cops and robbers on graphs
- Characterize cop-win graphs and interested in product of cop-win graphs

1984 AIGNER AND FROMME

- Consider the situation where more cops capture the robber
- For planar graph, three cops suffice to win

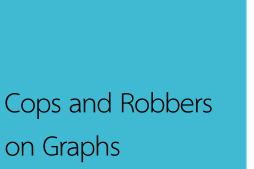
2011 WILLIAM DAVID BAIRD

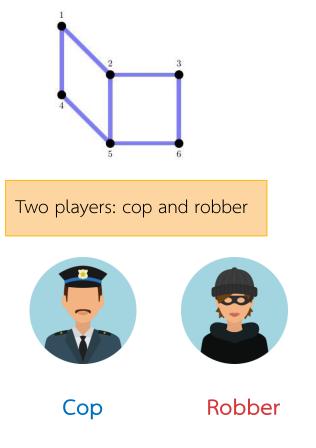
- Introduce the game of cops and robbers on hypergraphs
- Investigate that hyperpath is cop-win, but hypercycle is robber-win

Cops and Robbers on Graphs

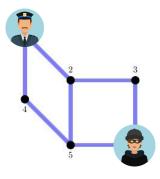
3

Start with a (reflexive) finite connected graph



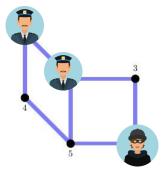


The cop chooses a beginning vertex and then the robber chooses the other vertex to begin

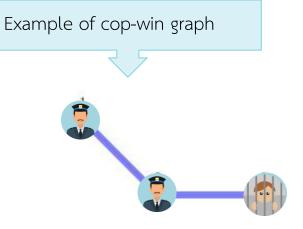


Cops and Robbers

In each round, the cop and the robber take alternatively moving from their present vertex to other vertices along edges or staying put



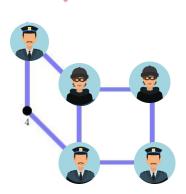
Cop wins if cop can catch robber by occupying the same vertex as the robber after finite number of moves



Cop wins

Robber wins if robber can run away (there exists an escaping way for the robber)

Example of robber-win graph



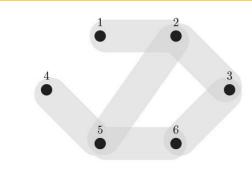
Robber wins

Cops and Robbers on Hypergraphs

8

Cops and Robbers on Hypergraphs

Start with a finite connected hypergraph



Two players: cop and robber

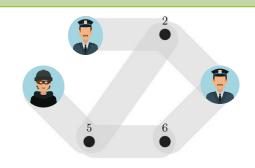
Сор

Robber

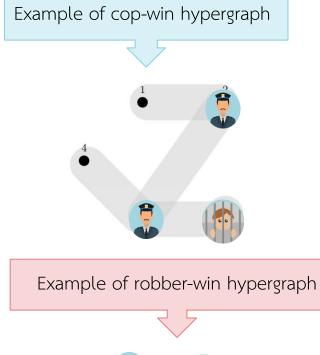
The cop chooses a beginning vertex and then the robber chooses the other vertex to begin

Cops and Robbers

In each round, they take alternatively moving from their present vertex x to any vertex y belonging to the same hyperedge as vertex x or staying put.



Cop wins and Robber wins



Cops and Robbers on Products of Hypergraphs

1983 (Strong) product of cop-win graphs is cop-win.

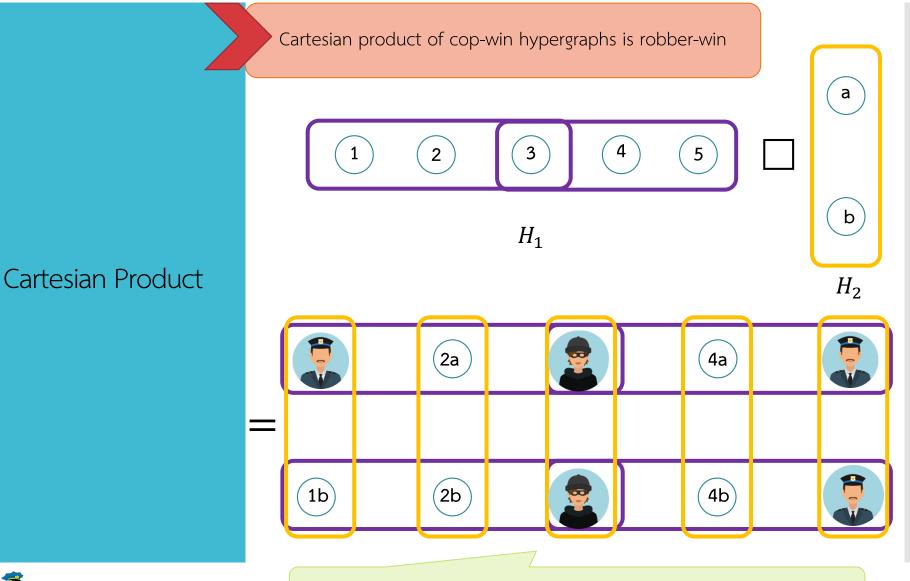
Consider products of cop-win hypergraphs

Cartesian product of cop-win hypergraphs is robber-win

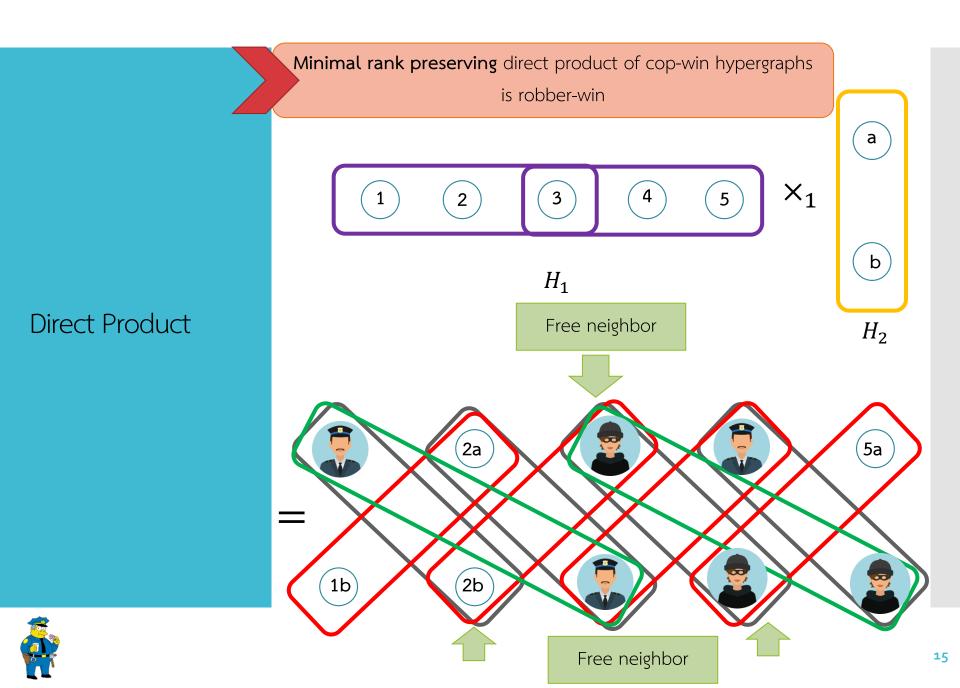
Direct product of cop-win hypergraphs is robber-win

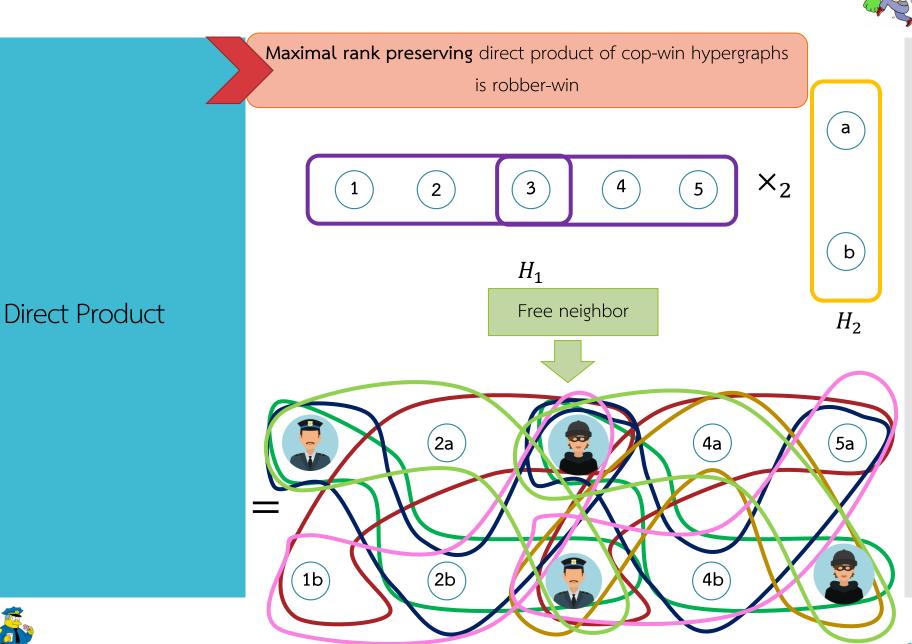
Strong product of cop-win hypergraphs is cop-win

Generalization of cops and robbers

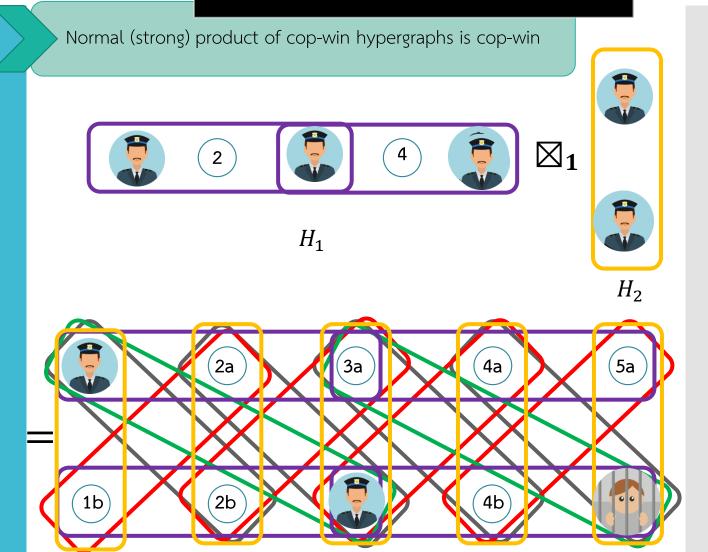


The robber always find the vertex to stay far from the cop.

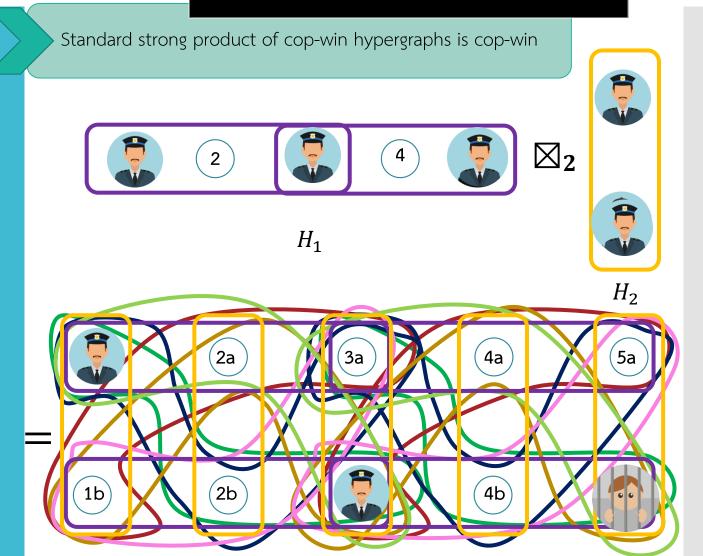




$E(H_1 \boxtimes_1 H_2) = E(H_1 \square H_2) \cup E(H_1 \times_1 H_2)$



$E(H_1 \boxtimes_2 H_2) = E(H_1 \Box H_2) \cup E(H_1 \times_2 H_2)$



Strong Product

Characterization of Cop-win Hypergraphs

19

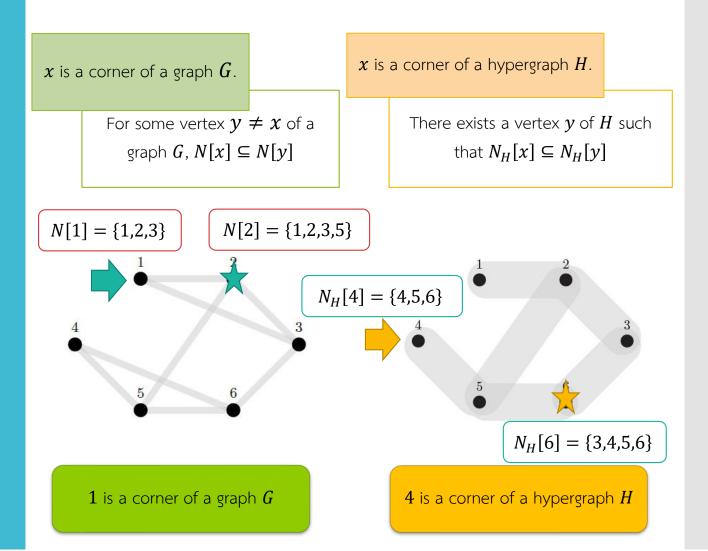
by successively deletion corners (in any order), G can be reduced to K_1

1983 A finite cop-win graph if and only if it is **dismantlable**.

1984 Let x be a corner of G and $\overline{G} = G - x$. G is a cop-win graph if and only if \overline{G} is a cop-win graph.

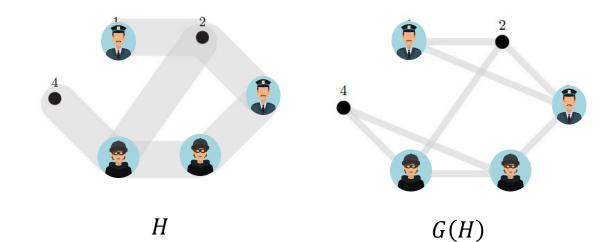
Let x be a corner of a hypergraph H. H is a cop-win hypergraph if and only if a weakly deletion H - x is a cop-win hypergraph

Generalization of cops and robbers



V(G(H)) = V(H) and $uv \in E(G(H))$ if $\{u, v\} \subseteq e$ for some $e \in E(H)$

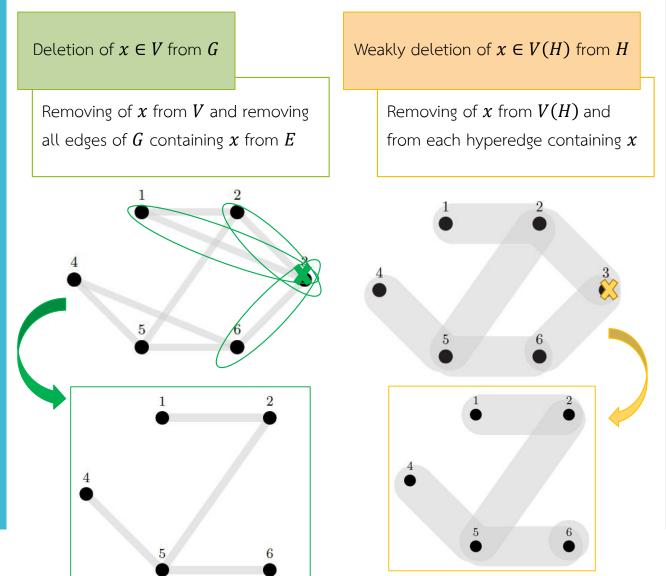
H is a robber-win hypergraph if and only if a graph G(H) of a hypergraph H is a robber-win graph

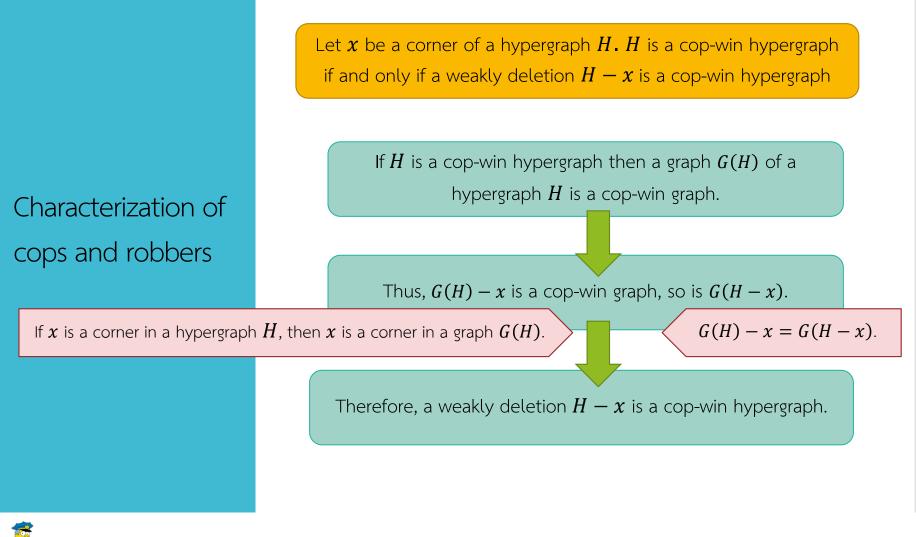


If H is a robber-win hypergraph, by applying winning strategy of robber in H, G(H) is a robber-win graph

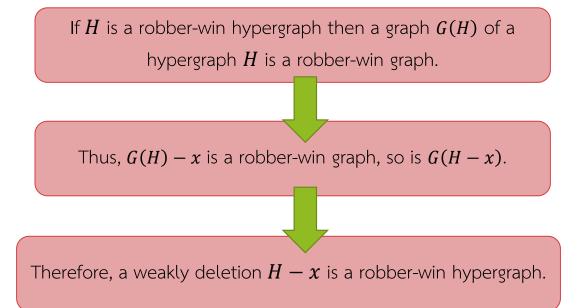
If G(H) is a robber-win graph, by applying winning strategy of robber in G(H), H is a robber-win hypergraph

Characterization of cops and robbers

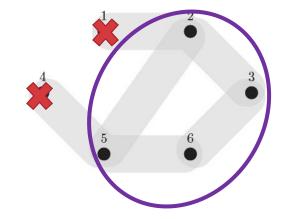




Let x be a corner of a hypergraph H. H is a cop-win hypergraph if and only if a weakly deletion H - x is a cop-win hypergraph



A hypergraph H is a cop-win hypergraph if and only if by successively weakly deletion corners (in any order), H can be reduced to a single vertex.



|--|

Robber-win hypergraph

A hypergraph H is a cop-win hypergraph if and only if by successively weakly deletion corners (in any order), H can be reduced to a single vertex.



Reduced to a single vertex

Cop-win hypergraph

A hypergraph is *t*-joined if each intersection of hyperedges contains exactly *t* vertices

A hyperpath is a sequence of hyperedges $E_1, E_2, E_3, \dots, E_k$, such that E_i and E_{i+1} are t-joined for t > 0 and for $1 \le i \le k - 1$ and $E_i \cap E_j = \emptyset$ when $j \ne i + 1 \pmod{k}$

For an integer k > 2, a k-hypercycle is a collection of khyperedges $E_1, E_2, E_3, \dots, E_k$, with two hyperedges E_i and E_j are incident if $j = i + 1 \pmod{k}$

Hyperpath and

Hpercycle

29

The products of $H_1(V_1, E_1)$ and $H_2(V_2, E_2)$

The Cartesian Product $H_1 \Box H_2$

Vertex-set: $V_1 \times V_2$

Edge-set: { $(x_1, y_1), (x_2, y_2), (x_3, y_3), ..., (x_r, y_r)$ } is an edge

if 1. $\{x_1, x_2, x_3, \dots, x_r\} \in E_1$ and $y_1 = y_2 = y_3 = \dots = y_r \in V_2$

2. $\{y_1, y_2, y_3, \dots, y_r\} \in E_2$ and $x_1 = x_2 = x_3 = \dots = x_r \in V_1$

The products of $H_1(V_1, E_1)$ and $H_2(V_2, E_2)$

The Minimal Rank Preserving Direct Product $H_1 imes_1 H_2$

Vertex-set: $V_1 \times V_2$

Edge-set: { $(x_1, y_1), (x_2, y_2), (x_3, y_3), ..., (x_r, y_r)$ } is an edge

if 1. $\{x_1, x_2, x_3, ..., x_r\} \in E_1$ and $\{y_1, y_2, y_3, ..., y_r\} \subseteq e_2$ for some $e_2 \in E_2$

2. $\{x_1, x_2, x_3, \dots, x_r\} \subseteq e_1$ for some $e_1 \in E_1$ and $\{y_1, y_2, y_3, \dots, y_r\} \in E_2$

The products of $H_1(V_1, E_1)$ and $H_2(V_2, E_2)$

The Maximal Rank Preserving Direct Product $H_1 imes_2 H_2$

Vertex-set: $V_1 \times V_2$

Edge-set: $\{(x_1, y_1), (x_2, y_2), (x_3, y_3), \dots, (x_r, y_r)\}$ is an edge

2. $\{y_1, y_2, y_3, \dots, y_r\} \in E_2$ and there is an edge $e_1 \in E_1$ such that $\{x_1, x_2, x_3, \dots, x_r\}$ is a multiset of elements of e_1 , and $e_1 \subseteq \{x_1, x_2, x_3, \dots, x_r\}$

